

Calculation at Chesswood

We are dividing by counting on 8 each time since we are dividing by 8 .

+8 +8 +8 +8 +8 +8 +8

$\begin{array}{lllllll}0 & 8 & 16 & 24 & 32 & 40 & 48 \\ 56\end{array}$
It took 7 jumps to get to 56 ... so $56 \div 8$ is 7

$$
56 \div 8=7
$$

Number Line in chunks

Use a key facts box of known multiplication

 facts to support - $1 \mathrm{x}, 2 \mathrm{x}, 5 \mathrm{x}$ and 10 x .What jumps of 8 can you make on the number line towards 56? $5 \times 8=40$ would be good! Now a jump of $2 \times 8=16$ would take you to 56 .

$$
\begin{gathered}
\text { Key Facts } \\
1 \times 8=8 \\
2 \times 8=16 \\
5 \times 8=40 \\
10 \times 8=80
\end{gathered}
$$

Use a number line to do this.

0

$$
40
$$

Add 5 and $2=7$.

$$
56 \div 8=7
$$

Calculation at Chesswood
Number Line in chunks
What jumps of 7 can you make on the number line towards 135?
$10 \times 7=70$ would be good!
Now a jump of $9 \times 7=63$ would take you to 133. But that's not 135. There's 2 remaining.

Compact Method - Short

Use squared paper to help write in the place value columns.
Always start dividing from the largest value digit $(8=800)$

$$
256 \div 7=
$$

I must remember to calculate one digit at a time!

$$
\begin{array}{rlrl}
125 & 8 \div 7 & =1 r 1 \\
8^{1} 7^{3} 5 & 17 \div 7 & =2 r 3 \\
36 \div 7 & =5
\end{array}
$$

(Write the remainder next to the digit in the place value column to the right.)

$$
875 \div 7=125
$$

Compact Method - Short

Use squared paper to help write in the place value columns.
Always start dividing from the largest value digit $(8=800)$

$$
256 \div 7=
$$

I must remember to calculate one digit at a time!

$$
\begin{aligned}
125 r 1 \\
8_{8}^{1} 7^{3} 6
\end{aligned} \quad \begin{aligned}
8 \div 7 & =1 r 1 \\
17 \div 7 & =2 r 3 \\
36 \div 7 & =5 r 1
\end{aligned}
$$

(Write the remainder next to the digit in the place value column to the right.)

$$
876 \div 7=125 r 1
$$

