Calculation at Chesswood

Addition

Subtraction

Multiplication

Division

Calculation at Chesswood

Addition

Number Line

Partitioning

Expanded Column

Compact Column

Number Line

Draw a blank number line
Start with the largest number and partition the other
... 47 is $40+7$

Addition

$$
76+47=70+6+40+7
$$

Or it's best to write it like this...

Partitioning

$$
110+13=123
$$

$76+47=123$

Horizontal Partitioning

Squared paper may help line up each number in its Ones (O), Tens (T) or Hundreds (H) columns.

I can start to partition the numbers in rows.

$$
\begin{aligned}
& T O T O H T O \\
& 76+47= \\
& 70+40=\frac{110}{13} \\
& 6+7=\frac{1}{T} 0
\end{aligned}
$$

$$
\text { Recombine } 123
$$

$76+47=123$

Use squared paper to write the numbers in columns.

$$
\begin{array}{r}
70+6 \\
+\quad 40+7 \\
\hline 110+13=123
\end{array}
$$ the ones first.

$$
76+47=123
$$

Expanded Column

Use squared paper to write the numbers in columns.

$$
\begin{array}{r}
76 \\
+\quad 47 \\
\hline 13 \\
110 \\
\hline 123
\end{array}(40+70)
$$

$$
76+47=123
$$

Expanded Column

Use squared paper to write the numbers in columns.

$$
\begin{array}{r}
\begin{array}{r}
276 \\
+\begin{aligned}
147 \\
133
\end{aligned} \\
110(70+40) \\
300 \\
\hline 423
\end{array}(200+100) \\
+276+147=423
\end{array}
$$

Compact Column

Use squared paper to write the numbers in columns.

$6+7=13$
(Write the ten under the place value column to the left.)
$7+4+1=12$

(Write the ten under the place value column to the left.)
$2+1+1=4$

$$
276+147=423
$$

Calculation at Chesswood

Subtraction

Counting on

Start with the 47 and 76 at each end of the number line.

Count on in jumps of ones or tens. Add up the jumps to find the difference between the numbers.

$$
76-47=29
$$

Counting back

Start with the 76 on the right of the number line.
Then count back, partitioning the 47. First subtract the tens, then subtract the ones.

$$
76-47=29
$$

Horizontal Partitioning

Squared paper may help line up each number in its Ones (O) or Tens (T) columns.

$$
\begin{aligned}
& T O T O T O \\
& 76-47= \\
& 76-7=69 \\
& 69-40=29
\end{aligned}
$$

$$
76-47=29
$$

Expanded Column

Use squared paper to write the numbers in columns.

I get a negative number - I can't use this within a calculation!
I need to exchange a ten into ten ones: $10+6=16$.

$$
16-7=9
$$

$$
\begin{aligned}
& 60+16 \\
& 70+6 \\
& -40+7 \\
& \hline 20+9=29 \\
& \hline
\end{aligned}
$$

Now I can subtract:

$$
\begin{aligned}
16-7 & =9 \\
60-40 & =20
\end{aligned}
$$

$$
76-47=29
$$

Expanded Column

Use squared paper to write the numbers in columns.

If I subtract 7 from 6, I get a negative number - I can't use this within a calculation!
I need to exchange a ten into ten ones: $10+6=16$.

$$
\begin{gathered}
200 \quad 160 \quad \text { into ten ones: } 10+ \\
20 \quad 16-7=9 \\
300+70+6 \\
-\frac{100+70+7}{200+90+9=299}
\end{gathered}
$$

$376-177=199$

Calculation at Chesswood

Subtraction

Compact Column

Use squared paper to write the numbers in columns.

If I subtract 7 from 6 ,
I get a negative number - I can't use this within a calculation!
I need to exchange a ten
into ten ones: $10+6=16$.

199

Calculation at Chesswood

Multiplication

Number Line

\searrow

Partitioning

Partitioning - Grid
V
Expanded Column
Compact Column

Calculation at Chesswood

Multiplication 1

Number Line

We are multiplying by counting on... 6 each time, and do this 7 times.

Start with 0 on the number line.

$+6+6+6+6+6+6+6$

$0 \quad 6121824303642$
$6 \times 7=42$

Multiplication 3

Grid - Short

56×7... partition 56 to $50+6$ $50 \times 7=350$
$6 \times 7=42$
50
6

7 | 350 | 42 |
| :--- | :--- |

This is where I partition the larger number... I put the numbers in my grid.

Now add 350 and 42
$56 \times 7=392$

Multiplication

Grid - Long
56×27..... partition 56 to $50+6$ and 27 to $20+7$

I can use my partitioning skills in a larger grid.

$56 \times 27=1512$

Multiplication 5

 Expanded Column - ShortUse squared paper to write the numbers in columns.

$$
+\frac{350}{392}(50 \times 7)
$$

$56 \times 7=392$

Multiplication 6

Expanded Column - Long

Use squared paper to write the numbers in columns.

$$
\begin{array}{rr}
56 \\
\times \quad 27 \\
\hline 42 & (6 \times 7) \\
350(50 \times 7) \\
120 & (6 \times 20) \\
+\begin{array}{l}
1000 \\
\hline 1512 \\
\hline
\end{array} & (50 \times 20) \\
\hline
\end{array}
$$

$56 \times 27=1512$

Compact Column - Short

Use squared paper to write the numbers in columns.

I can calculate mentally and use

$$
\begin{array}{r}
56 \\
\times \begin{array}{r}
7 \\
\hline 392 \\
4
\end{array} \quad(50 \times 7=350)
\end{array}
$$

$56 \times 7=392$

Multiplication 8

Compact Column - Long

Use squared paper to write the numbers in columns.

$$
\begin{array}{r}
56 \\
\times \quad 27 \\
\hline 392 \\
+\quad 1120 \\
\hline 1267) \\
\hline 1512
\end{array}
$$

$56 \times 27=1512$

Calculation at Chesswood Number Line in small jumps

We are dividing by counting on 8 each time since we are dividing by 8 .

$+8+8+8+8+8+8+8$ $\wedge \wedge \wedge \wedge \wedge \wedge$
$\begin{array}{lllllll}0 & 8 & 16 & 24 & 32 & 40 & 48 \\ 56\end{array}$
It took 7 jumps to get to 56 ... so $56 \div 8$ is 7

$$
56 \div 8=7
$$

Number Line in chunks

Use a key facts box of known multiplication

 facts to support $-1 \mathrm{x}, 2 \mathrm{x}, 5 \mathrm{x}$ and 10 x .What jumps of 8 can you make on the number line towards 56?
$5 \times 8=40$ would be good!
Now a jump of $2 \times 8=16$ would take you to 56.

> Key Facts
> $1 \times 8=8$
> $2 \times 8=16$
> $5 \times 8=40$
> $10 \times 8=80$

Use a number line to do this.

$$
5 \times 8=40 \quad \searrow / 2 \times 8=16 \searrow
$$

0

$$
56 \div 8=7
$$

Number Line in chunks

Use a key facts box of known multiplication facts to support $-1 \mathrm{x}, 2 \mathrm{x}, 5 \mathrm{x}$ and 10 x .

What jumps of 8 can you make on the number line towards 56?
$5 \times 8=40$ would be good!
Now a jump of $2 \times 8=16$ would take you to 56.

> Key Facts
> $1 \times 8=8$
> $2 \times 8=16$
> $5 \times 8=40$
> $10 \times 8=80$

$$
5 \times 8=40 \searrow / 2 \times 8=16 \searrow
$$

Use a number
line to do this.
Use a number
line to do this.

56
Add 5 and $2=7$ and don't forget the Year $3 \quad$ remainder 2.
$58 \div 8=7$

Compact Method - Short

Use squared paper to help write in the place value columns.
Always start dividing from the largest value digit $(8=800)$

$$
256 \div 7=
$$

I must remember

 to calculate one digit at a time!$$
\begin{array}{rlrl}
125 & 8 \div 7 & =1 r 1 \\
7 & 8^{1} 7^{3} 5 & 17 \div 7 & =2 r 3 \\
36 \div 7 & =5
\end{array}
$$

(Write the remainder next to the digit in the place value column to the right.)

$$
875 \div 7=125
$$

Compact Method - Short

Use squared paper to help write in the place value columns.
Always start dividing from the largest value digit $(8=800)$

$$
256 \div 7=
$$

I must remember to calculate one digit at a time!

$$
\begin{aligned}
& 7 \longdiv { 1 2 5 r 1 } \\
& 8 \div 7=1 r 1 \\
& 17 \div 7=2 r 3 \\
& 36 \div 7=5 r 1
\end{aligned}
$$

(Write the remainder next to the digit in the place value column to the right.)

$$
876 \div 7=125 r 1
$$

Compact Method - Long

$$
\begin{gathered}
8 \div 7=1 r 1 \\
17 \div 7=2 r 3 \\
36 \div 7=5 r 1
\end{gathered}
$$

I must remember to calculate one digit at a time! Knowing my times table

$876 \div 7=$ will help.
Use squared paper to help write in the place value columns.
Always start dividing from the largest value digit ($8=800$)
$876 \div 7=125 r 1$

Compact Method - Long

$$
16 \begin{array}{rr}
0232 r 8 \\
\begin{array}{rr}
3720 & 3 \div 16=0 r 3 \\
37 & 37 \div 16=2 r 5 \\
-32 \downarrow & 52 \div 16=3 r 4 \\
52 & 40 \div 16=2 r 8
\end{array}
\end{array}
$$

$-\frac{48}{4} \downarrow \quad$ Use squared paper to help write in the place value columns.

$$
\begin{aligned}
& -\frac{32}{8} \quad \begin{array}{l}
\text { Always start dividing from the } \\
\text { largest value digit }(3=3000)
\end{array}
\end{aligned}
$$

$$
3720 \div 16=232 r 8
$$

$$
\begin{array}{r}
37 \\
-32 \downarrow \\
-52 \\
-48 \\
-40
\end{array}
$$ or $232 \frac{1}{2}$ or 232.5

Fractions: remainder 8 out of $16\left(\frac{8}{16}=\frac{1}{2}=.5\right)$ and keep calculating in the same way (up to 2 decimal places).

I can convert a remainder into a fraction or a decimal.

Compact Method - Long
Converting the remainder $\left.1 6 \longdiv { 3 7 2 0 . 0 } \begin{array} { r } { \text { Decimals: include } } \\ { 3 7 2 3 0 \text { and ra after } } \\ { \text { the decimal point } } \end{array}\right\}$ $\left.1 6 \longdiv { 3 7 2 0 . 0 } \begin{array} { r } { \text { Decimals: include } } \\ { 3 7 2 3 0 \text { and ra after } } \\ { \text { the decimal point } } \end{array}\right\}$ $1 6 \longdiv { 3 7 2 0 . 0 } \begin{array} { l } { 0 2 3 2 } \\ { \begin{array} { l } { \text { Decimals: include } } \\ { \text { another O after } } \\ { \text { the decimal point } } \end{array} } \end{array}$ $1 6 \longdiv { 3 7 2 0 . 0 } \begin{array} { l } { 0 2 3 2 } \\ { \begin{array} { l } { \text { Decimals: include } } \\ { \text { another O after } } \\ { \text { the decimal point } } \end{array} } \end{array}$

$$
\begin{gathered}
-\frac{32}{8} \downarrow \\
0
\end{gathered}
$$

$$
\begin{array}{r}
-80 \\
-8720 \div 16=232 \text { ry or } 232 \frac{8}{16}
\end{array}
$$

